
58One Intel Software & Architecture (OISA)

Application Performance Snapshot
Performance Overview at Your Fingertips

One Intel Software & Architecture (OISA) 59

Application Performance Snapshot (APS)

High-level overview of application performance

Merges previous Application Performance Snapshot with MPI
Performance Snapshot

Identify primary optimization areas and next steps in analysis

Extremely easy to use

Informative, actionable data in clean HTML report
• Also includes recommendations for next steps in analysis

Detailed reports available via command line

Scales to large jobs

One Intel Software & Architecture (OISA) 60

APS Usage

Setup Environment
$ source <APS_Install_dir>/apsvars.sh

Run Application
$ mpirun <mpi options> aps <application and args>

Generate Report on Results
$ aps --report <result folder>

Generate advanced CL reports on
Results
$ aps-report –<option> <result folder>

One Intel Software & Architecture (OISA) 61

APS HTML Report

One Intel Software & Architecture (OISA) 62

HTML Report Breakdown - Overview

▪ Overview shows all areas and
relative impact on code
performance

▪ Provides recommendation for
next step in performance analysis

One Intel Software & Architecture (OISA) 63

HTML Report Breakdown – Parallel Runtimes

▪ MPI Time

• How much time was spent in MPI calls

• Average by ranks with % of Elapsed time

• Available for MPICH-based MPIs

▪ MPI Imbalance

• Unproductive time spent in MPI library waiting for data

• Available for Intel MPI

▪ OpenMP Imbalance

• Time spent at OpenMP Synchronization Barriers
normalized by number of threads

• Available for Intel OpenMP

One Intel Software & Architecture (OISA) 64

HTML Report Breakdown - Memory

▪ Memory stalls measurement with
breakdown by cache and DRAM

▪ NUMA ratio

▪ KNL: back-end stalls with L2-demand
access efficiency

One Intel Software & Architecture (OISA) 65

HTML Report Breakdown – Vectorization

▪ FPU Utilization based on HW-event
statistics with

• Breakdown by vector/scalar instructions

• Floating point vs memory instruction ratio

▪ KNL: SIMD Instr. per Cycle

• Scalar vs. vectorized instructions

66One Intel Software & Architecture (OISA)

Intel® VTune™ Profiler
Profiling MPI and Hybrid MPI+Threads Applications

One Intel Software & Architecture (OISA) 67

Using Intel® VTune™ Profiler on MPI programs

▪ Run VTune underneath MPI

• Results are grouped into one result per node

• <result folder>.<node name>

• Within result, ranks indicate rank number

$ mpirun <mpi args> amplxe-cl <vtune args> -- <application and args>

One Intel Software & Architecture (OISA) 68

Easier Multi-Rank Analysis of MPI + OpenMP
Tune hybrid parallelism using ITAC + VTune Profiler

Tune OpenMP performance of high impact ranks in VTune Profiler

Process names link
to OpenMP metrics

Ranks sorted by MPI
Communication Spins –
ranks on the critical path
are on the top

Per-rank OpenMP
Potential Gain and
Serial Time metrics

Detailed OpenMP
metrics per MPI ranks

One Intel Software & Architecture (OISA) 69

Intel® Inspector

▪ Analysis Process

▪ Launch Intel® Inspector

• Use mpirun

• List your app as a parameter

▪ Results organized by MPI rank

▪ Review results

• Graphical user interface

• Command line report

Find errors earlier when they are less expensive to fix

One Intel Software & Architecture (OISA) 70

Use the command-line tool under the MPI run script to gather report
data

Argument Sets can be used for more control

• Only collect data on certain ranks

• Different collections or options on different ranks

A unique results directory is created for each analyzed MPI rank

Launch the GUI and view the results for each rank

Using Intel® Inspector with MPI

$ mpirun -n 4 inspxe-cl -r my_result -collect mi1 -- ./test

71One Intel Software & Architecture (OISA)

Hands-On
Build and Run a Simple MPI Program

One Intel Software & Architecture (OISA) 72

Simple MPI Program - Setup

▪ Intel MPI provides a simple example in C, C++, Fortran, fortran90 and
Java under the directory <impi_install_dir>/test/

▪ Copy the file to your working directory :

▪ $ cp /opt/intel/impi/<version>/test/test.c .

▪ Ensure your environment is set to use the Intel MPI compiler wrappers:

▪ $ source /opt/intel/impi/<version>/bin64/mpivars.sh

▪ You can check that the environment is set properly by checking if the
variable I_MPI_ROOT is set:

▪ $ echo $I_MPI_ROOT

One Intel Software & Architecture (OISA) 73

Simple MPI Program – Build and Run

▪ Compile the test program using the provided wrapper:

▪ $ mpiicc ./test.c –o test.x

▪ Note that you can see exactly what the compiler wrapper will use by
typing:

▪ $ mpiicc –show

▪ Run the program on a single node. How many cores are available?

▪ $ mpirun ./test.x

▪ Run the program on at least two nodes, and set I_MPI_DEBUG=4 to
check on which node and core each MPI rank run.

One Intel Software & Architecture (OISA) 74

Simple MPI Program – Review Questions

▪ How do compiler scripts match to languages, e.g which compile script is
used for Fortran and which one for C?

• What is the difference between mpicc and mpiicc?

• Does mpiifort/mpiicc always take the ifort/icc compiler contained in the
same package? Can you force mpiifort to take a different version?

• What is the strategy Intel MPI Library uses to fill up nodes? What is the
default process pinning when we have less ranks than physical core?

• How would tasks be distributed if we had 8 physical cores per node, 2
nodes, and we only used 12 MPI ranks total?

75One Intel Software & Architecture (OISA)

Hands-On
ITAC Trace of Simple MPI Program

One Intel Software & Architecture (OISA) 76

Simple MPI Trace - Setup

▪ Intel MPI provides a simple example in C, C++, Fortran, fortran90
and Java under the directory <impi_install_dir>/test/

▪ Copy the file to your working directory :

▪ $ cp /opt/intel/impi/<version>/test/test.c .

▪ Ensure your environment is set to use Intel MPI and ITAC:

▪ $ source /opt/intel/impi/<version>/bin64/mpivars.sh

▪ $ source /opt/intel/itac/<version>/bin/itacvars.sh

▪ You can check that the environment is set properly by checking if
the variables I_MPI_ROOT and VT_ROOT are set.

One Intel Software & Architecture (OISA) 77

Simple MPI Trace – Build and Run (I)

▪ Compile the test program using the provided wrapper:

▪ $ mpiicc ./test.c –o test_1.x

▪ Run the program with a small number of tasks (2 or 4) and collect
the trace:

▪ $ mpirun –np 2 –trace ./test_1.x

▪

One Intel Software & Architecture (OISA) 78

Simple MPI Trace – Build and Run (II)

▪ Copy the executable to change its name:

▪ $ cp ./test_1.x ./test_2.x

▪ Set LD_PRELOAD to the libVT.so location and run with a
different number of tasks but without the –trace flag:

▪ $ export LD_PRELOAD=$VT_SLIB_DIR/libVT.so

▪ $ mpirun –np 4 ./test_2.x

▪

One Intel Software & Architecture (OISA) 79

Simple MPI Trace – Build and Run (II)

▪ Compile the test program using the provided wrapper and the –
trace flag:

▪ $ mpiicc –trace ./test.c –o test_3.x

▪ This time, make sure we collect to a single trace file:

▪ $ export VT_LOGFILE_FORMAT=STFSINGLE

▪ Run the program again:

▪ $ mpirun –np 2 ./test_3.x

One Intel Software & Architecture (OISA) 80

Simple MPI Trace – Visualize Traces

▪ There are several ways of viewing your results using the ITAC GUI

• From the system that collected the data – using an X window

• Copying the trace files to a local Linux* or Windows system

▪ If you have an X-Window or VNC connection running:

▪ $ traceanalyzer test_3.x.stf
▪ If you moved the file to a local system just doble-click the stf file

▪ The Summary opens first – what is the most expensive MPI call?

▪ Proceed to the next window, which rank uses the most MPI time? [Hint:
Load Balance tab, look at “Children of all processes”]

▪ Make sure to check out the “Event Timeline” within the “Charts” menu

81One Intel Software & Architecture (OISA)

Hands-On
Produce APS Report with Simple MPI Program

One Intel Software & Architecture (OISA) 82

Simple MPI APS report - Setup

▪ Intel MPI provides a simple example in C, C++, Fortran, fortran90
and Java under the directory <impi_install_dir>/test/

▪ Copy the file to your working directory :

▪ $ cp /opt/intel/impi/<version>/test/test.c .

▪ Ensure your environment is set to use Intel MPI and APS:

▪ $ source /opt/intel/impi/<version>/bin64/mpivars.sh

▪ $ source /opt/intel/performance_snapshots/apsvars.sh

▪ You can check that the environment is set properly by checking if
the variable I_MPI_ROOT.

One Intel Software & Architecture (OISA) 83

Simple MPI APS report - Build and Run

▪ Compile the test program using the provided wrapper:

▪ $ mpiicc ./test.c –o test.x

▪ Run the program with a small number of tasks (2 or 4) and using APS:

▪ $ mpirun –np 4 aps ./test.x

▪ Notice that a new directory named aps_report_<yyymmdd> has been
generated

▪ Notice also that instructions are given regarding how to generate a full
report

▪

One Intel Software & Architecture (OISA) 84

Simple MPI APS report - Build and Run

▪ Generate a text summary report from the command line:

▪ $ aps-report -s ./aps_results_<yyymmdd>

▪ Generate an html report following the instructions provided:

▪ $ aps --report=<working_dir>/aps_result_<yyymmdd>

▪ This will generate the text summary again by default

▪ Open the html report with any browser and check that all the expected
sections are included.

▪

85One Intel Software & Architecture (OISA)

Hands-On
Simple MPI VTune Example

One Intel Software & Architecture (OISA) 86

Simple MPI VTune™ Example - Setup

▪ Obtain the example tarball from the website:

▪ https://mantevo.org/downloads/miniFE_ref_2.0.htm
l

▪ Ensure your environment is set to use Intel MPI and VTune™
Profiler:

▪ $ source /opt/intel/impi/<version>/intel64/bin/mpivars.sh

▪ $ source /opt/intel/vtune/amplxe-vars.sh

▪ You can check that the environment is set properly by checking if
the variables I_MPI_ROOT and VTUNE_PROFILER_2020_DIR are
set.

One Intel Software & Architecture (OISA) 87

Simple MPI VTune™ Example - Build

▪ Untar the example:

▪ $ tar xzvf sources/miniFE-2.0_ref.tgz

▪ Change to the new directory:

▪ $ cd miniFE-2.0_ref/src

▪ Build the executable:

▪ $ make CC=mpiicc CXX=mpiicpc

▪ Copy the generated executable miniFE.x to the top-level
directory:

▪ $ cp ./miniFE.x ../

One Intel Software & Architecture (OISA) 88

Simple MPI VTune™ Example - Run

▪ Now change directory to the top-level directory and perform an hpc-
performance collection:

▪ $ cd ../
▪ $ mpirun -np 4 amplxe-cl -collect hpc-performance \
▪ -r hpc -- ./miniFE.x nx=100
▪ Open newly generated results in the GUI:

▪ $ amplxe-gui ./hpc.<hostname>
▪ What is the MPI imbalance for this job?

▪ Can you identify the slowest MPI rank? [Hint: Bottom-up, Grouping by
Process/Function/Threads/Call Stack]

89One Intel Software & Architecture (OISA)

Additional ITAC Capabilities

One Intel Software & Architecture (OISA) 90

Zooming

One Intel Software & Architecture (OISA) 91

Grouping and Aggregation

▪ Allow analysis on different levels of detail by aggregating data upon group-definitions

▪ Functions and threads can be grouped hierarchically

• Process Groups and Function Groups

▪ Arbitrary nesting is supported

• Functions/threads on the same level as groups

• User can define his/her own groups

▪ Aggregation is part of View-definition

• All charts in a View adapt to requested grouping

• All charts support aggregation

One Intel Software & Architecture (OISA) 92

Aggregation Example

One Intel Software & Architecture (OISA) 93

Tagging and Filtering

▪ Help concentrating on relevant parts

▪ Avoid getting lost in huge amounts of trace data

▪ Define a set of interesting data

• E.g. all occurrences of function x

• E.g. all messages with tag y on communicator z

▪ Combine several filters:
Intersection, Union, Complement

▪ Apply it

• Tagging: Highlight messages

• Filtering: Suppress all non-matching events

One Intel Software & Architecture (OISA) 94

Tagging Example

One Intel Software & Architecture (OISA) 95

Filtering Example

One Intel Software & Architecture (OISA) 96

Ideal Interconnect Simulator (Idealizer)

▪ Helps to figure out application’s imbalance simulating its behavior in
the “ideal communication environment”

Easy way to identify application bottlenecks

Actual trace

Idealized Trace

One Intel Software & Architecture (OISA) 97

Building Blocks: Elementary Messages

MPI_Recv

P1

P2

Early Send /
Late Receive

MPI_Isend

MPI_Recv

P1

P2

Late Send /
Early Receive

MPI_Isend

One Intel Software & Architecture (OISA) 98

Building Blocks: Elementary Messages

MPI_Recv

MPI_IsendMPI_IsendP1

P2

Early Send /
Late Receive

MPI_Isend

MPI_Recv

P1

P2

Late Send /
Early Receive

zero duration

One Intel Software & Architecture (OISA) 99

Building Blocks: Elementary Messages

MPI_IsendP1

P2

Early Send /
Late Receive

MPI_Isend

MPI_Recv

P1

P2

Late Send /
Early Receive

MPI_Recv

zero duration

zero duration

One Intel Software & Architecture (OISA) 100

Building Blocks: Elementary Messages

MPI_IsendP1

P2

Early Send /
Late Receive

MPI_Isend

MPI_Recv

P1

P2

Late Send /
Early Receive

MPI_Recv

zero duration

zero duration

MPI_Isend

zero duration

One Intel Software & Architecture (OISA) 101

Building Blocks: Elementary Messages

MPI_IsendP1

P2

Early Send /
Late Receive

MPI_IsendP1

P2

Late Send /
Early Receive

MPI_Recv

zero duration

zero duration

MPI_Isend

zero duration

MPI_Recv

Load imbalance

One Intel Software & Architecture (OISA) 102

Tuning Methods

▪ Library Tuning (algorithms, fabric parameters)

• mpitune

• MPI statistics

▪ Application Tuning (load balance, MPI/threaded/serial performance)

• Intel® Trace Analyzer and Collector

• Intel® VTune™ Profiler XE

• Application Performance Snapshot

One Intel Software & Architecture (OISA) 103

Use the automatic tuning facility to tune the Intel® MPI Library for
your cluster or application (done once, may take a long time)

Modes (see mpitune –h for options)

• Cluster-wide tuning

• Application-specific tuning

Creates options settings which are used with the –tune flag

Library Tuning: mpitune

mpitune …

mpitune –application \”mpirun –n 32 ./exe\” …

mpirun –tune …

One Intel Software & Architecture (OISA) 104

Lightweight Statistics

▪ Set I_MPI_STATS to a non-zero integer to gather MPI

communication statistics (max. 10)

▪ Change scope with I_MPI_STATS_SCOPE

▪ Define output file with I_MPI_STATS_FILE

▪ Bin results using I_MPI_STATS_BUCKET

One Intel Software & Architecture (OISA) 105

Lightweight Statistics

▪ $ export I_MPI_STATS=3
▪ $ export I_MPI_SCOPE=coll
▪ $ mpirun –np 8 ./exe
▪

▪ ...

▪ Communication Activity by actual args
▪ Collectives
▪ Operation Context Algo Comm size Message size Calls Cost(%)
▪ ---
▪ Allreduce
▪ 1 248 1 8 64 1 0.27
▪ Barrier
▪ 1 0 2 8 0 1 0.00
▪ Bcast
▪ 1 0 8 8 32 1 0.00
▪ 2 0 8 8 72 1 0.00
▪ 3 0 8 8 56 1 0.01
▪ Reduce
▪ 1 248 1 8 8 1 0.00
▪ 2 248 1 8 72 1 0.32
▪ ===

10
6

