
MPI Performance
Intel® MPI Library

Intel® Trace Analyzer and Collector

Notices & Disclaimers

2One Intel Software & Architecture (OISA)

Intel technologies may require enabled hardware, software or service activation. Learn more at intel.com or from the OEM or retailer.

Your costs and results mayvary.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice. Notice Revision #20110804. https://software.intel.com/en-us/articles/optimization-notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. See backup for configuration details. For more complete information about performance and
benchmark results, visit www.intel.com/benchmarks.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No
product or component can be absolutely secure.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement,
as well as any warranty arising from course of performance, course of dealing, or usage in trade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property
of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

Agenda

3One Intel Software & Architecture (OISA)

 Distributed Performance with Intel® MPI Library

 Tuning MPI Application Performance with Intel® Trace Analyzer and
Collector

 Related Tools – Intel® MPI Benchmarks

 Summary and Resources

Intel® MPI Library

4One Intel Software & Architecture (OISA)

 Optimized MPI application performance
• Support for all Intel® Xeon® and Intel® Xeon Phi™ processors
• Optimized collectives with topology and architecture awareness

 Lower-latency and multi-vendor interoperability
• Industry leading latency
• Performance optimized support for the fabric capabilities

through OpenFabrics* (OFI) / libfabric

 Sustainable scalability up to 340K cores
• Efficient path by relying on libfabric
• New: Faster startup and finalization

 More robust MPI applications
• Seamless interoperability with Intel® Trace Analyzer and

Collector

 Conditional Numerical Reproducibility
• I_MPI_CBWR to control reproducible results across topologies

and hardware

Intel® MPI Library Overview

Achieve optimized MPI performance

Omni-PathT C P/IP InfiniBand iWarp Shared
Memory

…Other
Networks

Intel® MPI Library

Fabrics

Applications

CFD Crash Climate OCD BIO Other...

Develop applications for one fabric

Select libfabric provider at runtime

Cluster

5One Intel Software & Architecture (OISA)

Intel® MPI Library – One MPI Library to
develop, maintain & test for multiple fabrics

Intel® MPI Library Overview

6One Intel Software & Architecture (OISA)

 Streamlined product setup
• Install as root, or as standard user

• Environment variable script mpivars.(c)sh sets paths

 Compilation scripts to handle details
• One set to use Intel compilers, one set for user-specified compilers

 Environment variables for runtime control
• I_MPI_* variables control many factors at runtime

• Process pinning, collective algorithms, device protocols, and more

Compiling MPI Programs

7One Intel Software & Architecture (OISA)

 Compilation scripts automatically passes necessary libraries and
options to underlying compiler
• mpiifort, mpiicpc, and mpiicc use the Intel compiler by default
• mpif77, mpicxx, mpicc, and others use GNU compiler by default

Multiple ways to specify underlying compiler
• I_MPI_F77, I_MPI_CXX, etc. environment variables
• -f77, -cc, etc. command line options
• Useful for makefiles portable between MPI implementations

 All compilers are found via PATH

MPI Launcher

8One Intel Software & Architecture (OISA)

 Robust launch command

Options available for:
• Rank distribution and pinning

• Fabric selection and control

• Environment propagation

• And more

mpirun <mpi args> executable <program args>

Process Placement

9One Intel Software & Architecture (OISA)

 Layout Across Nodes
• Default placement puts one rank per core on each node

• Use –ppn to control processes per node

• Use a machinefile to define ranks on each node individually

• Use arguments sets or configuration files for precise control for complex jobs

 Pinning on Node
• Can pin to single or multiple cores

• Multiple options for automatic distribution based on resources such as socket, shared cache level, NUMA arrangement

• See documentation for details:

• https://software.intel.com/en-us/mpi-developer-reference-linux-process-pinning

• https://software.intel.com/en-us/mpi-developer-reference-linux-environment-variables-for-process-pinning

• https://software.intel.com/en-us/mpi-developer-reference-linux-interoperability-with-openmp

https://software.intel.com/en-us/mpi-developer-reference-linux-process-pinning
https://software.intel.com/en-us/mpi-developer-reference-linux-environment-variables-for-process-pinning
https://software.intel.com/en-us/mpi-developer-reference-linux-interoperability-with-openmp

Fabric Control via libfabric

10One Intel Software & Architecture (OISA)

 I_MPI_OFI_PROVIDER chooses provider (select based on
interconnect hardware):
• Default is normally fine

• tcp – Ethernet

• psm2 – Intel® Omni-Path Architecture

• mlx – InfiniBand* (requires at least Intel® MPI Library 2019 Update 5 and UCX
1.4)

• efa – AWS* EFA (Elastic Fabric Adapter), see
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html for
setup process

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa-start.html

Conditional Numerical Reproducibility

11One Intel Software & Architecture (OISA)

 I_MPI_CBWR
• 0 (default) – no reproducibility controls, utilize all optimizations

• 1 (weak) – disable topology aware optimizations, reproducible across different
rank placements/topologies

• 2 (strict) – disables topology aware optimizations and hardware optimizations,
reproducible across hardware and topology

MPI_Comm_dup_with_info
• “I_MPI_CBWR”=“yes”, sets strict mode for communicator

Automatic Tuning via Autotuner

12One Intel Software & Architecture (OISA)

 Tuning happens behind the scenes during application run

 Tuning is per communicator

 To tune:
• I_MPI_TUNING_MODE=auto

• I_MPI_TUNING_BIN_DUMP=<tuning file> (optional)

 To use tuning results:
• I_MPI_TUNING_BIN=<tuning file>

 Additional options for more control, see https://software.intel.com/en-
us/mpi-developer-reference-linux-autotuning

https://software.intel.com/en-us/mpi-developer-reference-linux-autotuning

Debugging MPI Applications

13One Intel Software & Architecture (OISA)

GDB*
• mpirun <mpi options> -gdb <application and options>
• mpirun –n <nranks> -gdba <mpirun pid>

 Allinea* DDT*
• ddt mpirun …

 gtool (https://software.intel.com/en-us/mpi-developer-reference-
linux-gtool-options)
• Set via –gtool option, -gtoolfile option, or I_MPI_GTOOL
• “<prepend>:<rank set>[=launch mode][@arch]

https://software.intel.com/en-us/mpi-developer-reference-linux-gtool-options

Intel® Trace Analyzer and Collector

14One Intel Software & Architecture (OISA)

Event-based Tracing for Distributed Applications

Intel® Trace Analyzer and Collector Overview

 Intel® Trace Analyzer and Collector helps the developer:

 Features

• Event-based approach

• Low overhead

• Excellent scalability

• Powerful aggregation and filtering functions

• Performance Assistance and Imbalance Tuning

Source
Code

Binary

Objects

Compiler

Linker

Runtime

Output

Intel® Trace Collector

Trace File (.stf)

• Visualize and understand parallel application behavior

• Evaluate profiling AstPaItiasntidcs-tacnodllleocatdbalancing

• Identify communication hotspots

-trace

Intel® Trace Analyzer

15One Intel Software & Architecture (OISA)

Strengths of Event-based Tracing

16One Intel Software & Architecture (OISA)

An event-based approach is able to detect temporal dependencies!

Predict

Record

Collect Collect information about exchange of
messages: at what times and in which order

Exact sequence of program states –keep
timing consistent

Detailed MPI program behavior

Summary page shows computation vs.
communication breakdown

Is your
application

MPI-bound?

Resource usage

Largest MPI
consumers

Next Steps

17One Intel Software & Architecture (OISA)

Helps navigate the trace data

 A View can show several Charts

 All Charts in a View are linked to

18One Intel Software & Architecture (OISA)

a single:
• time-span

• set of threads

• set of functions

 All Charts follow changes to
View (e.g. zooming)

Views and Charts

Chart

Get detailed impression of program structure
Display functions, messages, and collective operations for each
rank/thread along time-axis
Retrieval of detailed event information

Event Timeline

19One Intel Software & Architecture (OISA)

Get impression on parallelism and load balance

Show for every function how many threads/ranks are currently
executing it

20One Intel Software & Architecture (OISA)

Quantitative Timeline

Statistics about functions

Flat Function Profile

21One Intel Software & Architecture (OISA)

Function statistics including calling hierarchy
• Call Tree shows call stack

• Call Graph shows calling dependencies

22One Intel Software & Architecture (OISA)

Call Tree and Call Graph

Statistics about point-to-point or collective communication

Matrix supports grouping by attributes in each dimension
• Sender, Receiver, Data volume per msg, Tag, Communicator, Type

Available attributes
• Count, Bytes transferred, Time, Transfer rate

Communication Profiles

23One Intel Software & Architecture (OISA)

 Automatic Performance
Assistant

 Detect common MPI
performance issues

 Automated tips on potential
solutions

MPI Performance Assistant

Automatically detect
performance issues and
their impact on runtime

24One Intel Software & Architecture (OISA)

Checking MPI Application Correctness
Runtime Correctness Checks

Integration with Debuggers

25One Intel Software & Architecture (OISA)

Solves two problems:
• Finding programming mistakes which need to be fixed by the application developer

• Detecting errors in the execution environment

Two aspects:
• Error Detection – done automatically by the tool

• Error Analysis – manually by the user based on:

• Information provided about an error

• Knowledge of source code, system, …

26One Intel Software & Architecture (OISA)

MPI Correctness Checking

 All checks are done at runtime
in MPI wrappers

 Detected problems are reported
on stderr immediately in textual
format

 A debugger can be used to
investigate the problem at the
moment when it is found

Process 1

Application

MPI Correctness
Checking Library

MPI

Process n

MPI

MPI correctness
Checking Library

MPI
Correctness

Report

Application

TCP/IP over Ethernet

Fast Interconnect

MPI Calls

PMPI Calls

MPI Calls

PMPI Calls

STDERR STDERR

Debugger

Control
Messages

MPI
Communi-

cation

Control
Messages

MPI
Communi-

cation

Start/Stop Start/Stop

27One Intel Software & Architecture (OISA)

How Correctness Checking Works

 Local checks: isolated to single
process
• Unexpected process termination

• Buffer handling

• Request and data type management

• Parameter errors found by MPI

28One Intel Software & Architecture (OISA)

 Global checks: all processes
• Global checks for collectives and p2p

ops
• Data type mismatches

• Corrupted data transmission

• Pending messages

• Deadlocks (hard & potential)

• Global checks for collectives – one
report per operation
• Operation, size, reduction operation, root

mismatch

• Parameter error

• Mismatched MPI_Comm_free()

Categories of Checks

Levels of severity:
• Warnings: application can continue

• Error: application can continue but almost certainly not as intended

• Fatal error: application must be aborted

Some checks may find both warnings and errors
• Example: CALL_FAILED check due to invalid parameter

• Invalid parameter in MPI_Send() => msg cannot be sent => error

• Invalid parameter in MPI_Request_free() => resource leak => warning

29One Intel Software & Architecture (OISA)

Severity of Checks

Command line option via –check_mpi flag for Intel MPI Library:

30One Intel Software & Architecture (OISA)

Correctness Checking on Command Line

$ mpirun –check_mpi -n 2 overlap
[...]
[0] WARNING: LOCAL:MEMORY:OVERLAP: warning
[0] WARNING: New send buffer overlaps with currently active send buffer at address 0x7fbfffec10.
[0] WARNING: Control over active buffer was transferred to MPI at:
[0] WARNING: MPI_Isend(*buf=0x7fbfffec10, count=4, datatype=MPI_INT, dest=0, tag=103,
comm=COMM_SELF [0], *request=0x508980)
[0] WARNING:
[0] WARNING:

overlap.c:104
Control over new buffer is about to be transferred to MPI at:

[0] WARNING: MPI_Isend(*buf=0x7fbfffec10, count=4, datatype=MPI_INT, dest=0, tag=104,
comm=COMM_SELF [0], *request=0x508984)
[0] WARNING: overlap.c:105

Enable correctness checking info to be added to the tracefile:
• Enable VT_CHECK_TRACING environment variable:

Correctness Checking in GUI

$ mpirun –check_mpi –genv VT_CHECK_TRACING on –n 4 ./a.out

Errors Warnings

31One Intel Software & Architecture (OISA)

Viewing Source Code

32One Intel Software & Architecture (OISA)

Warnings indicate potential problems that could
cause unexpected behavior (e.g., incomplete
message requests, overwriting a send/receive
buffer, potential deadlock, etc.).

Errors indicate problems that violate the MPI
standard or definitely cause behavior not
intended by the programmer (e.g., incomplete
collectives, API errors, corrupting a send/receive
buffer, deadlock, etc.).

Debugger must be in control of application before error is found

A breakpoint must be set in MessageCheckingBreakpoint()

Documentation contains instructions for automating this process for
TotalView*, gdb, and idb.

33One Intel Software & Architecture (OISA)

Debugger Integration

Trace of a Simple MPI Program

34One Intel Software & Architecture (OISA)

Demo

Related Tools
Intel® MPI Benchmarks

Intel® Cluster Checker

35One Intel Software & Architecture (OISA)

 Standard benchmarks with OSI-
compatible CPL license
• Enables testing of interconnects,

systems, and MPI implementations
• Comprehensive set of MPI kernels that

provide performance measurements
for:
• Point-to-point message-passing

• Global data movement and computation
routines

• One-sided communications

• File I/O

• Supports MPI-1.x, MPI-2.x, and MPI-3.x
standards

What’s New:

 Introduction of new
benchmarks
• Measure cumulative bandwidth and

message rate values

Intel® MPI Benchmarks

The Intel® MPI Benchmarks provide a simple and

36One Intel Software & Architecture (OISA)

easy way to measure MPI performance on your cluster

Use an Extensive Diagnostic Toolset for High Performance
Compute Clusters—Intel® Cluster Checker (forLinux*)

 Ensure Cluster Systems Health
 Expert system approach providing cluster systems expertise - verifies system

health: find issues, offers suggested actions
 Provides extensible framework, API for integrated support
 Check 100+ characteristics that may affect operation & performance –

improve uptime & productivity

 New in 2019 Update 5 Release: Output & Features
Improve Usability & Capabilities
• New default test with faster execution
• New predefined user/admin specific tests and in-depth analysis
• Improved summary output on nodes and issue, details in log files
• Troubleshooting tests on prerequisites for Intel® MPI Library
• Support for the latest Intel processors (Intel® Xeon® Platinum 9200

Processor Family)
• BIOS checking capability for administrators, using ‘syscfg’ utility For application developers, cluster architects & users,

37One Intel Software & Architecture (OISA)

& system administrators

Intel® MPI Library product page
• www.intel.com/go/mpi

Intel® Trace Analyzer and Collector product page
• www.intel.com/go/traceanalyzer

Intel® Clusters and HPC Technology forums
• http://software.intel.com/en-us/forums/intel-clusters-and-hpc-technology

Intel® MPI Library Tuning Files
• https://software.intel.com/en-us/articles/replacing-tuning-configuration-files-in-intel-mpi-library

Intel® Cluster Checker
• https://software.intel.com/content/www/us/en/develop/tools/cluster-checker.html

38One Intel Software & Architecture (OISA)

Online Resources

http://www.intel.com/go/mpi
http://www.intel.com/go/traceanalyzer
http://software.intel.com/en-us/forums/intel-clusters-and-hpc-technology
https://software.intel.com/en-us/articles/replacing-tuning-configuration-files-in-intel-mpi-library
https://software.intel.com/content/www/us/en/develop/tools/cluster-checker.html

39

Backup

40One Intel Software & Architecture (OISA)

Environment Propagation

41One Intel Software & Architecture (OISA)

Use –[g]env[*] to control environment propagation
• Adding g propagates to all ranks, otherwise only to ranks in current argument

set

 -env <variable> <value> Set <variable> to <value>
 -envuser All user environment variables, with a few exceptions

(Default)
 -envall All environment variables
 -envnone No environment variables
 -envlist <variable list> Only the listed variables

Autotuner Detail

42One Intel Software & Architecture (OISA)

Intel® MPI library tuningapproaches

43One Intel Software & Architecture (OISA)

mpitune
mpitune

/fast
tuner

autotune
r

Micro benchmark tuning

Application tuning

Easy of use

Cluster time

Adoption to environment

Intel® MPI Library 2019 autotuner tuningflow

44One Intel Software & Architecture (OISA)

MPI_Allreduce 1st invocation: I_MPI_ADJUST_ALLREDUCE=0

MPI_Allreduce 2nd invocation: I_MPI_ADJUST_ALLREDUCE=1

…

MPI_Allreduce k-th invocation: I_MPI_ADJUST_ALLREDUCE=algo_id_max

MPI_Allreduce (k+1)-th invocation: I_MPI_ADJUST_ALLREDUCE=best_algo_id

MPI_Allreduce N-th invocation: I_MPI_ADJUST_ALLREDUCE=best_algo_id

…

Ex
ec

ut
io

n
ti

m
el

in
e

 No extra calls. Pure application driven tuning

 The procedure is performed for each message size and for each communicator

Autotuner communicator specifictuning

Node 2Node 1

MPI_COMM_WORLD

COMM_1 COMM_2

0 2

4

1

6 5

3

7

45One Intel Software & Architecture (OISA)

Each communicator has its own tuning. (E.g. COMM_1 and COMM_2 have independent tuning)

Get started withautotuner

46One Intel Software & Architecture (OISA)

Step 1 – Enable autotuner and store results (store is optional):

$ export I_MPI_TUNING_MODE=auto

$ export I_MPI_TUNING_BIN_DUMP=./tuning_results.dat

$ mpirun -n 96 -ppn 48 IMB-MPI1 allreduce -iter 1000,800 -time 4800

Step 2 – Use the results of autotuner for consecutive launches (optional):

$ export I_MPI_TUNING_BIN=./tuning_results.dat

$ mpirun -n 96 -ppn 48 IMB-MPI1 allreduce -iter 1000,800 -time 4800

NOTE: You may adjust number of tuning iterations (minimal overhead/maximum precision balance) and use
autotuner with every application run without results storing.

Environment Variables. Main flowcontrol

47One Intel Software & Architecture (OISA)

I_MPI_TUNING_MODE=<auto|auto:application|auto:cluster> (disabled by default)

I_MPI_TUNING_AUTO_ITER_NUM=<number> Tuning iterations number (1 by default).

I_MPI_TUNING_AUTO_SYNC=<0|1> Call internal barrier on every tuning iteration
(disabled by default)

I_MPI_TUNING_AUTO_WARMUP_ITER_NUM=<number> Warmup iterations number (1 by
default).

NOTE: Assume that there are around 30 algorithms to be iterated. E.g. Application has 10000 invocations of
MPI_Allreduce 8KB. For full tuning cycle I_MPI_TUNING_AUTO_ITER_NUM may be in 30 to 300 (if there is no
warmup part) range. High value is recommended for the best precision. Iteration number for large messages
may depend on I_MPI_TUNING_AUTO_ITER_POLICY_THRESHOLD .

I_MPI_TUNING_AUTO_SYNC is highly recommended for tuning file store scenario.

Environment Variables. Tuning scope and storagecontrol

48One Intel Software & Architecture (OISA)

I_MPI_TUNING_AUTO_COMM_LIST=<comm_id_1, … , comm_id_k> List of communicators to
be tuned (all communicators by default)

I_MPI_TUNING_AUTO_COMM_USER=<0|1> Enable user defined comm_id through MPI_Info
object. (disabled by default)

I_MPI_TUNING_AUTO_COMM_DEFAULT=<0|1> Default/universal comm_ids. (disabled by
default)

I_MPI_TUNING_AUTO_STORAGE_SIZE=<size> Max per-communicator tuning storage size
(512KB by default)

NOTE: You may use Intel® VTune™ Profiler’s Application Performance Snapshot for per communicator MPI
cost analysis and narrow tuningscope.

I_MPI_TUNING_AUTO_COMM_DEFAULT disables comm_id check (allows to get universal tuning)

Intel® VTune™Profiler’s Application Performance Snapshot (APS)per
communicatoranalysis

50One Intel Software & Architecture (OISA)

1. Source apsvars.sh:

$ source <path_to_aps>/apsvars.sh

2. Gather APS statistics:

$

$

export

export

MPS_STAT_LEVEL=5

APS_COLLECT_COMM_IDS=1

$

3.

mpirun -n 4 -ppn 2 aps IMB-MPI1

Generate an APS report:

allreduce -iter 1000,800

$ aps-report aps_result_20190228/ -lFE
https://software.intel.com/sites/products/snapshots/application-snapshot/

Available with Intel® VTune™ Profiler’s Application Performance Snapshot Update 4

https://software.intel.com/sites/products/snapshots/application-snapshot/

Intel® VTune™Profiler’s Application Performance Snapshot (APS)per
communicatoranalysis

4. Get the results:

| Communicators used in the application

|

| Communicator Id Communicator Size Time (Rank Average)(sec) Ranks

|

4611686018431582688 4 1.80 (0.45) 0,1,2,3

|

4611686018431582208 4 0.59 (0.15) 0,1,2,3

|
51One Intel Software & Architecture (OISA)

Intel® VTune™Profiler’s Application Performance Snapshot (APS)Interoperability

5. Specify communicators to be tuned:

$ export I_MPI_TUNING_AUTO_COMM_LIST=4611686018431582688
$ export I_MPI_TUNING_MODE=auto
$ mpirun -n 96 -ppn 48 IMB-MPI1 allreduce -iter 1000,800 -time 4800

NOTE: I_MPI_TUNING_AUTO_ITER_POLICY may impact tuning cycle for large messages. Please check that you
have enough application level invocations

52One Intel Software & Architecture (OISA)

Global Options vs. Local Options

54One Intel Software & Architecture (OISA)

Global Options are applied to all ranks
• -ppn, -genv, …

 Local Options are applied to a subset of ranks
• -n, -host, -env, …

WARNING: Some options can be set as local options via
environment variable, but must be consistent across job
• Collective algorithms

• Fabric selection and parameters

Configuration Files and Argument Sets

55One Intel Software & Architecture (OISA)

 Arguments Sets are used on the command line
 Configuration Files are pulled from the file specified by –configfile

<configfile>
 Global arguments appear first (first line, or at beginning of first argument

set)
 Local arguments for each argument set next
 Separated by : on command line (don’t separate globals), new line in

configfile
 Can be used to run heterogeneous binaries, different arguments for each

binary, different environment variables, etc.
 All ranks combined in order specified into one job

Command Line Argument Set

$ mpirun –genv OMP_NUM_THREADS 4 –n 6 –host node1 ./exe1 : -n 4 –host node2 ./exe2 :
–n 6 –host node4 ./exe4

Global option First Host Second Host

56One Intel Software & Architecture (OISA)

Third Host

• Host 1 runs “exe1” on “node1” using 6 MPI tasks and 4 threads per
MPI task

• No limit to number of different host or executables
• For high numbers of hosts a configuration file is more convenient…

Configuration File

57One Intel Software & Architecture (OISA)

 Configuration file allows flexibility and automation

Notice commented out line – simple to change host assignment

 Launching job is straightforward

$ cat theconfigfile
-genv OMP_NUM_THREADS 4
-n 6 –host node1 ./exe1
-n 4 –host node2 ./exe2
-n 4 –host dead_node3 ./exe3
-n 6 –host node4 ./exe4

$ mpirun –configfile theconfigfile

	Slide Number 1
	Notices & Disclaimers
	Agenda
	Intel® MPI Library
	Intel® MPI Library Overview
	Intel® MPI Library Overview
	Compiling MPI Programs
	MPI Launcher
	Process Placement
	Fabric Control via libfabric
	Conditional Numerical Reproducibility
	Automatic Tuning via Autotuner
	Debugging MPI Applications
	Slide Number 14
	Intel® Trace Analyzer and Collector Overview
	Strengths of Event-based Tracing
	Summary page shows computation vs. communication breakdown
	Views and Charts
	Event Timeline
	Quantitative Timeline
	Slide Number 21
	Call Tree and Call Graph
	Communication Profiles
	MPI Performance Assistant
	Checking MPI Application Correctness
Runtime Correctness Checks Integration with Debuggers
	MPI Correctness Checking
	How Correctness Checking Works
	Categories of Checks
	Severity of Checks
	Correctness Checking on Command Line
	Correctness Checking in GUI
	Viewing Source Code
	Debugger Integration
	Slide Number 34
	Related Tools
Intel® MPI Benchmarks Intel® Cluster Checker
	Intel® MPI Benchmarks
	Use an Extensive Diagnostic Toolset for High Performance Compute Clusters—Intel® Cluster Checker (for Linux*)
	Online Resources
	Slide Number 39
	Backup
	Environment Propagation
	Autotuner Detail
	Intel® MPI library tuning approaches
	Intel® MPI Library 2019 autotuner tuning flow
	Autotuner communicator specific tuning
	Get started with autotuner
	Environment Variables. Main flow control
	Environment Variables. Tuning scope and storage control
	Intel® VTune™ Profiler’s Application Performance Snapshot (APS) per
communicator analysis
	Intel® VTune™ Profiler’s Application Performance Snapshot (APS) per
communicator analysis
	Intel® VTune™ Profiler’s Application Performance Snapshot (APS) Interoperability
	Slide Number 52
	Global Options vs. Local Options
	Configuration Files and Argument Sets
	Command Line Argument Set
	Configuration File
	Slide Number 57
	Application Performance Snapshot (APS)
	APS Usage
	APS HTML Report
	HTML Report Breakdown - Overview
	HTML Report Breakdown – Parallel Runtimes
	HTML Report Breakdown - Memory
	HTML Report Breakdown – Vectorization
	Slide Number 65
	Using Intel® VTune™ Profiler on MPI programs
	Easier Multi-Rank Analysis of MPI + OpenMP
	Intel® Inspector
	Using Intel® Inspector with MPI
	Slide Number 70
	Simple MPI Program - Setup
	Simple MPI Program – Build and Run
	Simple MPI Program – Review Questions
	Slide Number 74
	Simple MPI Trace - Setup
	Simple MPI Trace – Build and Run (I)
	Simple MPI Trace – Build and Run (II)
	Simple MPI Trace – Build and Run (II)
	Simple MPI Trace – Visualize Traces
	Slide Number 80
	Simple MPI APS report - Setup
	Simple MPI APS report - Build and Run
	Simple MPI APS report - Build and Run
	Slide Number 84
	Simple MPI VTune™ Example - Setup
	Simple MPI VTune™ Example - Build
	Simple MPI VTune™ Example - Run
	Additional ITAC Capabilities
	Zooming
	Grouping and Aggregation
	Aggregation Example
	Tagging and Filtering
	Tagging Example
	Filtering Example
	Ideal Interconnect Simulator (Idealizer)
	Building Blocks: Elementary Messages
	Building Blocks: Elementary Messages
	Building Blocks: Elementary Messages
	Building Blocks: Elementary Messages
	Building Blocks: Elementary Messages
	Tuning Methods
	Library Tuning: mpitune
	Lightweight Statistics
	Lightweight Statistics
	Slide Number 105

