
Introduction to Intermediate
Level Python
Daniel Perrefort

Center for Research Computing

University of Pittsburgh

Today's Outline
1. Writing Object Oriented Python

2. Working with "Magic Methods"

3. Useful Python Design Patterns

4. Special Decorators for Classes

5. Inheritance

6. Introduction to SOLID

Break

Break

2

Writing Object Oriented
Python

3

What is a Programming Paradigm?

A particular style of writing software, often enforced by a programming language.

4

Programming
Paradigms

Imperative

Procedural
Object

Oriented

Declarative

Functional Logical Modular

This is where we will focus today

Procedural Programming

Computational steps are divided into reusable units and the code is executed serially

5

my_list = [10, 20, 30, 40]

def sum_the_list(data):
res = 0
for val in data:

res += val

return res

print(sum_the_list(my_list))

Object Oriented Programming

Data and logic are combined into objects that reflect distinct logical constructs

6

my_list = [10, 20, 30, 40]

class ListCalculator:

def __init__(self, data):
self.data = data

def sum(self):
return sum(self.data)

instance = ListCalculator(my_list)
print(instance.sum())

Numpy arrays and Pandas Dataframes are examples of objects.

Everything In Python Is An
Object!

(Even if you are writing "procedural" software)

Encapsulation

A big difference between procedural and OO is encapsulation:

"… the bundling of data with the mechanisms or methods that operate on the data, or the limiting of
direct access to some data, such as an object's components."

- Wikipedia

8

prices = {
"apples": 12.0,
"oranges": 15.5,
"mangos": 13.45,
"bananas": 11.5,

}

def calculate_fruit_tax(price):
"""Return the tax owed on a fruit purchase"""

return 1.02 * price

This is data: This is logic:

The class Keyword

9

class Rectangle:

def __init__(self, width, height):
self.width = width
self.height = height

def area(self):
return self.width * self.height

r1 = Rectangle(4, 5)
r2 = Rectangle(100, 100)

print(r1.area())

The class acts as a template
for creating new objects.

Objects are instances
of the class

Objects provide access to the
data/logic. Classes define what

the interface looks like.

Encapsulating Data: Class Attributes

10

class Rectangle:
width = 5
height = 6

r1 = Rectangle()
r2 = Rectangle()

This example defines three
main things:

•The Rectangle class

•The r1 and r2 instances

Encapsulating Data: Class Attributes

11

class Rectangle:
width = 5
height = 6

r1 = Rectangle()
r2 = Rectangle()

Class attributes can be accessed from instances
print(r1.width)
print(r2.width)

Example 1.1:

> 5
> 5

Class attributes can also be accessed from the class itself
print(Rectangle.width)
print(Rectangle.height)

> 5
> 6

Encapsulating Data: Class Attributes

12

class Rectangle:
width = 5
height = 6

r1 = Rectangle()
r2 = Rectangle()

print(Rectangle.width)
print(r1.width)
print(r2.width)

Example 1.2:

>
>
>

r1.width = 12
print(Rectangle.width)
print(r1.width)
print(r2.width)

>
>
>

Encapsulating Data: Class Attributes

13

class Rectangle:
width = 5
height = 6

r1 = Rectangle()
r2 = Rectangle()

print(Rectangle.width)
print(r1.width)
print(r2.width)

Example 1.2:

> 5
> 5
> 5

r1.width = 12
print(Rectangle.width)
print(r1.width)
print(r2.width)

> 5
> 12
> 5

Editing an instance only changes
the properties of that instance.

Encapsulating Data: Class Attributes

14

class Rectangle:
width = 5
height = 6

r1 = Rectangle()
r2 = Rectangle()

print(Rectangle.width)
print(r1.width)
print(r2.width)

Example 1.3:

> 5
> 5
> 5

Rectangle.width = 12
print(Rectangle.width)
print(r1.width)
print(r2.width)

>
>
>

Encapsulating Data: Class Attributes

15

class Rectangle:
width = 5
height = 6

r1 = Rectangle()
r2 = Rectangle()

print(Rectangle.width)
print(r1.width)
print(r2.width)

Example 1.3:

> 5
> 5
> 5

Rectangle.width = 12
print(Rectangle.width)
print(r1.width)
print(r2.width)

> 12
> 12
> 12

Editing a class changes the
properties of all current and
future instances.

Encapsulating Data: Instance Attributes

16

class Rectangle:

def __init__(self, width, height):
self.width = width
self.height = height

r1 = Rectangle(4, 5)
r2 = Rectangle(100, 100)

The init method is responsible for instantiating the class. It is called
every time a new instance is made.

The self variable is always the first argument in the init method. It
represents the instance being created.

Encapsulating Data: Instance Attributes

17

class Rectangle:

def __init__(self, width, height):
self.width = width
self.height = height

r1 = Rectangle(4, 5)
r2 = Rectangle(100, 100)

Example 2.1:

print(r1.width)
print(r1.height)

> 4
> 5

print(r2.width)
print(r2.height)

> 100
> 100

Encapsulating Data: Instance Attributes

18

class Rectangle:

def __init__(self, width, height):
self.width = width
self.height = height

r1 = Rectangle(4, 5)
r2 = Rectangle(100, 100)

Example 2.2:

print(Rectangle.width)

>

Encapsulating Data: Instance Attributes

19

class Rectangle:

def __init__(self, width, height):
self.width = width
self.height = height

r1 = Rectangle(4, 5)
r2 = Rectangle(100, 100)

Example 2.2:

print(Rectangle.width)

> AttributeError: type object 'Rectangle' has no attribute 'width'

Instance attributes are not
accessible from the class.

Class VS Instance Attributes

CLASS ATTRIBUTES

•Defined under the class directive

•Values are shared across all instances

•Attributes can be accessed from the class

INSTANCE ATTRIBUTES

•Defined in the __init__ method

•Values vary between instances

•Attributes do not exist for the class

When in doubt, you probably want an instance
attribute.

20

Encapsulating Logic: Methods

21

class Rectangle:

def __init__(self, width, height):
self.width = width
self.height = height

def area(self):
return self.width * self.height

r1 = Rectangle(4, 5)
r2 = Rectangle(100, 100)

Everything indented under the class keyword belongs to that
class. This includes defining methods (i.e., functions)

The first argument is always be the instance* – traditionally
called self.

*Technically there are exceptions to this rule. We will cover them later.

Encapsulating Logic: Methods

22

class Rectangle:

def __init__(self, width, height):
self.width = width
self.height = height

def area(self):
return self.width * self.height

r1 = Rectangle(4, 5)
r2 = Rectangle(100, 100)

Example 3.1:

Returned value is given as 4 * 5 = 20
print(r1.area())

> 20

Side Note: PEP8 Naming for Classes

•Class names are CamalCase

•Method and attribute names are snake_case

•Special cases:
◦ Variables and methods starting with an underscore are

"private"

◦ "Dunder" methods starting and ending with double
underscores extend built in functionality

•Other formatting notes:
◦ One space before methods (not two)

◦ Two spaces before classes

23

class MyClass:

def __init__(self):
self._private_attr = "Don't Touch"

def public_method(self):
return "Hello World!"

def _private_method(self):
return "Not for public use"

Working With
"Magic Methods"

24

Dunder Methods
Lookups
__getattribute__

__getattr__
__delattr__
__delitem__
__delslice__
__setattr__
__setitem__
__setslice__
__missing__
__getitem__
__getslice__
__class_getitem__

equality and hashing

__eq__
__ge__
__gt__
__le__
__ne__
__lt__
__hash__

25

binary operators
__add__
__and__
__divmod__
__floordiv__
__lshift__
__matmul__
__mod__
__mul__
__or__
__pow__
__rshift__
__sub__
__truediv__
__xor__
__radd__
__rand__
__rdiv__
__rdivmod__
__rfloordiv__
__rlshift__
__rmatmul__

__rmod__
__rmul__
__ror__
__rpow__
__rrshift__
__rsub__​
__rtruediv__
__rxor__
__iadd__
__iand__
__ifloordiv__
__ilshift__
__imatmul__
__imod__
__imul__
__ior__
__ipow__
__irshift__
__isub__
__itruediv__
__ixor__

unary operators
__abs__
__neg__
__pos__
__invert__

math
__index__
__trunc__
__floor__
__ceil__
__round__

iterator
__iter__
__len__
__reversed__
__contains__
__next__

numeric type casting
__int__
__bool__
__nonzero__
__complex__
__float__

str and repr
__str__
__repr__

context manager
__enter__
__exit__

descriptor
__get__
__set__
__delete__
__set_name__

async
__aenter__​
__aexit__​
__aiter__​
__anext__​
__await__​

creation and typing
__call__
__class__
__dir__
__init__
__init_subclass__
__prepare__
__new__
__subclasses__

instance / subclass check
__instancecheck__
__subclasscheck__

modules
__import__​

others
__bytes__​
__fspath__​
__getnewargs__​
__reduce__​
__reduce_ex__​
__sizeof__​
__length_hint__
__format__
__cmp__

Casting With __str__ (and __repr__)

26

class Rectangle:

def __init__(self, width, height):
self.width = width
self.height = height

def __str__(self):
return f"Square: {self.width} x {self.height}"

Example 4:

r1 = Rectangle(4, 5)
print(r1)

> Square: 4 x 5

__str__ functions similarly to __repr__:

◦ __str__ should be human readable

◦ __repr__ provides technical information

◦ __repr__ is the fallback for __str__

Equality With __eq__

27

class Rectangle:

def __init__(self, width, height):
self.width = width
self.height = height

def __eq__(self, other):
same_width = self.width == other.width
same_height = self.width == other.width
return same_width and same_height

Example 5:

r1 = Rectangle(4, 5)
r2 = Rectangle(100, 100)
print(r1 == r2)

> False

r3 = Rectangle(100, 100)
print(r2 == r3)

> True

print(r2 is r3)

> False

Each equality operator is implemented separately (__eq__,
__ne__, __gt__, __lt__, __ge__, __le__)

All Binary operators have a dunder (and, or, *, /, //, @, etc.)

Indexing With __getitem__

28

class Rectangle:

def __init__(self, width, height):
self.width = width
self.height = height

def __getitem__(self, index):
return (self.width, self.height)[index]

Example 6:

r1 = Rectangle(4, 5)
print(r1[0])
print(r1[1])

> 4
> 5

__getitem__ and __setitem__ are also responsible for
dictionary style indexing.

r1[0] = 100
print(r1[0])

> TypeError: 'type' object does not support item
assignment

Callable Objects With __call__

29

Example 7:

class Rectangle:

def __init__(self, width, height):
self.width = width
self.height = height

def __call__(self, value):
print('You called this object with', value)

r1 = Rectangle(4, 5)
r1(16)

> You called with object with 16

Everything in Python is an object

Functions are callable objects

Functions implement the __call__ method

30

class Rectangle:

def __init__(self, width, height):
self.width = width
self.height = height

def __str__(self):
return f"Square: {self.width} x {self.height}"

def __eq__(self, other):
same_width = self.width == other.width
same_height = self.width == other.width
return same_width and same_height

def __getitem__(self, index):
return (self.width, self.height)[index]

def area(self):
return self.width * self.height

Useful Python Design
Patterns

31

Context Managers

32

Context managers are used to automate setup and teardown tasks for cleaner development

from pathlib import Path

with Path('my_file.txt').open() as file:
print(file.closed) # False

print(file.closed) # True

Creating a Context Manager

33

class TemporaryFile:

def __init__(self, path):
self._path = Path(path)
self._file = None

def __enter__(self):
self._path.touch()
self._file = self.path.open()

def __exit__(self, *args):
self._file.close()
self._path.unlink()

def write(self, data):
...

Instance setup and configuration is
defined in __init__

Make sure the file exists and open the
file.

Close and delete the open file.

Add methods as necessary to make the
returned object useful

Creating a Context Manager

34

class TemporaryFile:
def __init__(self, path):

self._path = Path(path)
self.__file = None

def __enter__(self):
self._path.touch()
self._file = self._path.open()
return self

def __exit__(self, exc_type, exc_value, traceback):
self._file.close()
self._path.unlink()

def write(self, data):
...

Example 8:

from pathlib import Path

file_path = Path('my_file.txt')
with TemporaryFile(file_path) as temp_file:

temp_file.write('some_text')

Context Managers – Example Use Cases

•I/O Operations

•Remote Server Connections

•Database Sessions

•User Authentication

•Data caching (with cleanup)

•Resource locking

•Hardware interactions

35

Generators

36

Example 9.1

def perfect_squares(num):
i = 0
data = []
while i < num:

data.append(i * i)
i += 1

return data

for value in perfect_squares(10):
...

Q: How many iterations are performed for num=100?

A: 200 iterations

Generators with Functions

37

Generators are built using the yield keyword

def perfect_squares(num):
i = 0
data = []
while i < num:

data.append(i * i)
i += 1

return data

for value in perfect_squares(10):
...

def perfect_squares(num):
i = 0
while i < num:

yield i * i
i += 1

for value in perfect_squares(10):
...

Generators are memory efficient. They are also useful for reducing runtime complexity.​

Example 9.2

Generators with Classes

38

def perfect_squares(num):
i = 0
while i < num:

yield i * i
i += 1

return data

for value in perfect_squares(10):
...

class PerfectSquares:

def __init__(self, num):
self._num = num
self._i = None

def __iter__(self):
self._i = -1
return self

def __next__(self):
self._i += 1
if self._i < self._num:

return self._i * self._I

raise StopIteration()

Iteration relies on the __iter__ and __init__ methods behind the scenes

Python provides easier ways to write generators.
Use dunders to expose more advanced behavior.

Example 9.3

Generators with Comprehension

39

my_list = [i * i for i in range(10)]
> [1, 4, 9, 16, 25]

my_set = {i * i for i in range(10)}
> {1, 4, 9, 16, 25}

my_dict = {i: i * i for i in range(10)}
> {1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

my_generator = (i * i for i in range(10))
> <generator object <genexpr> at 0x7f297815f5e0>

In practice, using comprehension is much simpler

Decorators

40

def outer(func):
def inner(*args, **kwargs):

print('I have been decorated!')
func(*args, **kwargs)

return inner

Decorators are callable objects that wrap other callable objects

The outer function accepts the unwrapped
callable and returns a wrapped version

The inner function defines the new logic
wrapped around the original callable

Important: Pay attention to the signature of the inner function.
That will be the new signature of the wrapped function.

Decorators

41

def outer(func):
def inner(*args, **kwargs):

print('I have been decorated!')
func(*args, **kwargs)

return inner

Example 10.1:

def my_function(x):
print('I was given the number', x)

my_function(5)
> I was given the number 5

wrapped = outer(my_function)
wrapped(5)
> I have been decorated!
> I was given the number 5

The @ syntax for Decorators

42

def outer(func):
def inner(*args, **kwargs):

print('I have been decorated!')
func(*args, **kwargs)

return inner

Example 10.2:

@outer
def my_function(x)

print('I was given the number', x)

my_function(5)
> I have been decorated!
> I was given the number 5

Decorators Example: @cache

43

from functools import lru_ache

@lru_cache
def return_number(x)

print('The function was called for', x)
return x

print(return_number(5))
> The function was called for 5
> 5

print(return_number(5))
> 5

Building @cache from scratch

44

def cache(func):
...

Q: How would you build @cache from scratch?

Building @cache from scratch

45

def cache(func):
cached_data = dict()

def wrapped(*args, **kwargs):
key = str(args) + str(kwargs)
if key not in cached:

cached[key] = func(*args, **kwargs)

return cached[key]

return wrapped

Q: How would you build @cache from scratch for a functions that take a single argument?

Down the Decorator Rabbit Hole

46

def cache(max_size):

def wrapper(func):
cached_data = dict()

def wrapped(*args, **kwargs):
result = func(*args, **kwargs)
if getsizeof(cached) + getsizeof(result) < max_size:

…

return cached[arg]

return wrapped

Three layers can be used to define decorators that take arguments.

@cache(max_size=1000)
def return_number(x):

...

Down the Decorator Rabbit Hole

47

class Cache:

def __init__(self, max_size):
self._max_size = max_size

def __call__(func):

def wrapped(arg):
result = func(arg)
if getsizeof(cached) + getsizeof(result) < self._max_size:

…

return cached[arg]

return wrapped

And yes... we can write it as a class

@cache(max_size=1000)
def return_number(x):

...

Special Decorators for
Classes

48

Built In Decorators - @property

49

The getter/setter pattern is commonly used to modify object state

car = SelfDrivingVehicle()

Get the current value
current_speed = car.get_speed()

Change to a new value
car.set_speed(mph=15)

class SelfDrivingVehicle:

def get_speed(self):
"""Get the current speed"""

def set_speed(self, mph):
"""Set the current speed"""

Example 11.1

Built In Decorators - @property

50

The property decorator turns methods into attributes

car = SelfDrivingVehicle()

Get the current value
current_speed = car.speed

Change to a new value
car.speed = 15

class SelfDrivingVehicle:

@property
def speed(self):

"""Get the current speed"""

@speed.setter
def speed(self, mph):

"""Set the current speed"""

Example 11.2

Built In Decorators - @property

51

car = SelfDrivingVehicle()

Get the current value
current_speed = car.speed

Change to a new value
car.speed = 15
> AttributeError: property 'speed' of 'SelfDrivingVehicle' object

has no setter

class SelfDrivingVehicle:

@property
def speed(self):

"""Get the current speed"""

Example 11.3If you don't provide a setter, an error is raised

Built In Decorators - @classmethod

52

Class methods can access class attributes but not instance attributes

class SelfDrivingVehicle:
_top_speed = 80

@classmethod
def get_top_speed(cls):

return cls._top_speed

Built In Decorators - @staticmethod

53

Static methods have no information concerning the parent class

class SelfDrivingVehicle:

@staticmethod
def print_version():

print("Version 3.0.4")

Inheritance

54

What is Inheritance

•Inheritance allows classes to reuse logic from other classes

•Subclasses (child classes) inherit logic from parent classes

55

Shape Rectangle Square

Single Inheritance

56

class Rectangle:

def __init__(self, length, width):
self.length = length
self.width = width

def area(self):
return self.length * self.width

class Square(Rectangle):

def __init__(self, length):
super().__init__(length, length)

The parent class defines the
basic level of behavior

The child class adds/overwrites
functionality as necessary

The super() call provides access
to the parent class

Single Inheritance

57

class Rectangle:

def __init__(self, length, width):
self.length = length
self.width = width

def area(self):
return self.length * self.width

class Square(Rectangle):

def __init__(self, length):
super().__init__(length, length)

my_square = Square(5)
print(my_square.area())
> 25

Abstract Base Classes

58

import abc

class Shape(metaclass=abc.ABCMeta):

@abc.abstractmethod
def area(self):

"""Return the area"""

@abc.abstractmethod
def perimeter(self):

"""Return the perimeter"""

class Rectangle:

def area(self):
print("This is overloaded")

Abstract classes are any class that
implements abstract methods

Child classes override abstract or
they are also abstract.

Abstract Base Classes

59

import abc

class Shape(metaclass=abc.ABCMeta):

@abc.abstractmethod
def area(self):

"""Return the area"""

@abc.abstractmethod
def perimeter(self):

"""Return the perimeter"""

class Rectangle:

def area(self):
print("This is overloaded")

my_shape = Shape()
> Can't instantiate abstract class Shape with abstract methods

area, perimeter

my_rectangle = Rectangle()
my_rectangle.area()
> This is overloaded

Multiple Inheritance

•You can inherit from multiple classes at once

•Python will search for methods/attributes in
order of inheritance

•Inheritance is mostly a depth first search.
Things get complicated when classes share
parents.

60

Break

61

Introduction to SOLID

62

SOLID Design
Principles

◦ S - Single-Responsibility Principle

◦ O - Open-Closed Principle

◦ L - Liskov Substitution Principle

◦ I - Interface Segregation Principle

◦ D - Dependency Inversion Principle

Object Oriented software should
adhere to the normal principles:

◦ Keep It Simple (KISS)

◦ Principle of Least Surprise

◦ You Aren’t Going To Need It
(YAGNI)

◦ Don't Repeat Yourself (DRY)

It should also adhere to SOLID
principles.

63

Single Responsibility Principle (SRP)

•Every module, class, or function should be responsible for a single functionality,
and it should encapsulate that part.

•In simpler terms:
◦ SRP applies at all levels of code (functions, classes, modules, packages)

◦ Each "unit of code" should be responsible for a single task

◦ Each unit should be properly encapsulated

•SRP does not argue for giant-monolithic structures. It’s the opposite!

64

"A class should have only one reason to change"
-Robert C. Martin

SRP Example

65

Extract Transform Load

class Load:

def upload(data, DB):
"""Load data into DB"""

class Transform:

def average_yield(data):
"""Return value metrics"""

… # Other calculations

class Extract:

def __init__(self):
self._data = None

def authenticate(self, user_key):
"""Log in to remote server"""

def download_data(self, url):
"""Download project data"""

Question: Should the `authenticate` step be in its own class? Why?

Open/Closed

• Objects should be open for extension but closed for modification
◦ A class should be extendable without modifying the class itself

• Open/Closed benefits from:
◦ Clean inheritance structures (assuming SRP)

◦ Polymorphism in dependency classes

◦ Low coupling between classes

66

Open/Closed Example

67

class Square:
"""Stores geometric properties for a square"""

def __init__(self, length):
self.length = length

class Circle:
"""Stores geometric properties for a circle"""

def __init__(self, radius):
self.radius = radius

Open/Closed Example

68

class Calculator:

def total_area(self, shape_arr):
"""Return the total area for a collection of shapes"""

total_area = 0
for shape in shape_arr:

if isinstance(shape, Square):
total_area += shape.length ** 2

elif isinstance(shape, Circle):
total_area += pi * shape.radius ** 2

return total_area

class Square:
"""Stores geometric properties for a square"""

def __init__(self, length):
self.length = length

class Circle:
"""Stores geometric properties for a circle"""

def __init__(self, radius):
self.radius = radius

Open/Closed Example

69

class AreaCalculator:

def total_area(self, shape_arr):
"""Return the total area for a collection of shapes"""

return sum(shape.area() for shape in shape_arr)

class Square:
"""Stores geometric properties for a square"""

def __init__(self, length):
self.length = length

def area(self):
return self.length ** 2

class Circle:

def __init__(self, radius):
self.radius = radius

def area(self):
return pi * self.radius ** 2

Notice how this solution also follows the SRP.

Liskov Substitution

Parent classes should be replaceable with their child classes

Note:
We don't actually expect random code substitutions. This is more of a "guiding principle" for designing
good inheritance structures.

In practicality:
◦ Avoid child classes that have little in common with the parent class

◦ Aim for high cohesion

70

Liskov Substitution Example

71

You have been tasked with writing two classes - one
representing a `Square` and one representing a
`Rectangle`.

Define these classes in a way that:
1. One class inherits from another
2. Each class has a method for the `area` of the shape
3. The classes obey Liskov Substitution

Liskov Substitution Example

72

You have been tasked with writing two classes - one
representing a `Square` and one representing a
`Rectangle`.

Define these classes in a way that:
1. One class inherits from another
2. Each class has a method for the `area` of the shape
3. The classes obey Liskov Substitution

Square

Rectangle

Option 1

Liskov Substitution Example

73

You have been tasked with writing two classes - one
representing a `Square` and one representing a
`Rectangle`.

Define these classes in a way that:
1. One class inherits from another
2. Each class has a method for the `area` of the shape
3. The classes obey Liskov Substitution

Square

Rectangle

Rectangle

Square

Option 1 Option 2

Liskov Substitution Example

74

You have been tasked with writing two classes - one
representing a `Square` and one representing a
`Rectangle`.

Define these classes in a way that:
1. One class inherits from another
2. Each class has a method for the `area` of the shape
3. The classes obey Liskov Substitution

class Rectangle:

def __init__(self, length, width):
self.length = length
self.width = width

def area(self):
return self.length * self.width

Liskov Substitution Example

75

You have been tasked with writing two classes - one
representing a `Square` and one representing a
`Rectangle`.

Define these classes in a way that:
1. One class inherits from another
2. Each class has a method for the `area` of the shape
3. The classes obey Liskov Substitution

class Rectangle:

def __init__(self, length, width):
self.length = length
self.width = width

def area(self):
return self.length * self.width

class Square(Rectangle):

def __init__(self, length):
super().__init__(length, length)

Interface Segregation

•An interface is a set of abstractions:
◦ `Square.area()`

◦ `Square.perimiter()`

◦ `Square.width()`

•Clients should not be required to use interfaces they don’t need
◦ Most applicable to large projects

◦ Avoid giant, monolithic interfaces

◦ Rely on smaller, client specific interfaces

76

Interface Segregation Example

77

Interface ML Model

Client Group 1

Interface Segregation Example

78

Interface ML Model

Client Group 1

Client Group 2

Interface Segregation Example

79

Interface ML Model

Client Group 1

Client Group 2

Client Group 3

Interface Segregation Example

80

Interface 2 ML Model

Client Group 1

Client Group 2

Client Group 3

Interface 1

Interface 3

Interfaces can still be
subclasses of a shared
(SOLID) parent class

Dependency Inversion Principle

• High-level constructs should not rely on low level implementations
◦ Both should depend on abstractions (e.g., interfaces).

• Abstractions should not depend on details.
◦ Details (implementations) should depend on abstractions.

• In simple terms: Rely on abstractions

81

Dependency Inversion Example

82

class AreaCalculator:

def total_area(self, shape_arr):
"""Return the total area for a collection of shapes"""

total_area = 0
for shape in shape_arr:

if isinstance(shape, Square):
total_area += shape.length ** 2

elif isinstance(shape, Circle):
total_area += pi * shape.radius ** 2

return total_area

class Square:
"""Stores geometric properties for a square"""

def __init__(self, length):
self.length = length

class Circle:
"""Stores geometric properties for a circle"""

def __init__(self, radius):
self.radius = radius

Dependency Inversion Example

83

class AreaCalculator:

def total_area(self, shape_arr):
"""Return the total area for a collection of shapes"""

return sum(shape.area() for shape in shape_arr)

class Square:

def __init__(self, length):
self.length = length

def area(self):
return self.length ** 2

class Circle:

def __init__(self, radius):
self.radius = radius

def area(self):
return pi * self.radius ** 2

Notice how this solution also follows the SRP
and Open/Closed.

84

