Grasping Deep Learning from Fundamentals to Applications

June 15, 2023

Lecture 2 – Convolutional Neural Networks (CNNs)

Instructors: Yufei Huang, PhD; Arun Das, PhD

nature > review articles > article

nature

Published: 27 May 2015

Deep learning

Yann LeCun 🖂, Yoshua Bengio & Geoffrey Hinton

Nature 521, 436-444(2015) | Cite this article 204k Accesses | 13997 Citations | 975 Altmetric | Metrics

•

< >

Article

Deepfake Generation: Forbes

Oct 3, 2021, 07:34pm EDT | 53,450 views

AlphaFold Is The Most Important Achievement In AI —Ever

https://www.forbes.com/sites/robtoews/2021/10/03/alphafold-is-the-most-important-achievement-in-ai-ever/

37% of tech organizations use Al!

VB VentureBeat

Uber's self-driving AI predicts the trajectories of pedestrians, vehicles, and cyclists

In a paper, Uber researchers describe an autonomous vehicle perception system that reasons about the behavior of pedestrians, vehicles, and ...

World Economic Forum

How AI and machine learning are helping to tackle COVID-19

Organizations have been quick to apply AI and machine-learning in the fight to curb the pandemic - and here are some of the most exciting \ldots

Forbes

Image Recognition

Semantic Segmentation

Object Detection

Instance Segmentation

Test with your own text	Results	
This product was vory had!	TAG	CONFIDENCE
This product was very bau:	Negative	99.7%
U 1		
Classify Text		

Sentiment Analysis of reviews.

Super Resolution Upscaling

https://arxiv.org/abs/2104.07636

https://thispersondoesnotexist.com

Image Recognition

Object Detection

Instance Segmentation

The AI needs to see!

- Human vision is a complex phenomenon starting with the light rays entering through the cornea of the eye and the visual cortex making sense of the various signals it receives.
- However, computers speak only numbers. Hence, images are represented as numbers, usually in intensities ranging from 0 to 255.

0	2	15	0	0	11	10	0	0	0	0	9	9	0	0	
0	0	0	4	60	157	235	255	255	177		61	32	0	0	2
0	10	16	119	238	255	244	245	243	250	249	255	222	103	10	
0	14	170	255	255	244	254	255	253	245	255	249	253	251	124	
2	98	255	228	255	251	254	211	141	116	122	215	251	238	255	4
13	217	243	255	155	33	226	52	2	0	10	13	232	255	255	3
16	229	252	254	49	12	0	0		7	0	70	237	252	235	6
6	141	245	255	212	25			3		115	236	243	255	137	
	87	252	250	248	215	60			121	252	255	248	144	6	
	13	112	255	255	245	255	182	181	248	252	242	208	36	0	
			1110	251	26.6	241	265	247	255	241	162	17			1
	ň			1.0	260	265	246	254	253	255	120				
Ň	ň	,		25.5	265	255	240	267	255	244	255	182	10		
Ľ		200	25.2	200	255	241	240	2.52	255	244	2.00	106	104		
ŭ		200	202	240	100	241	100	1		255	240	200	124		
Ľ		200	242	120	100			Ĭ		- 33	255	232	230	20	
1	218	251	250	137			0		0		100	255	250	125	
1	173	255	255	011	2000	20		13		12	182	251	245	61	
2	197	251	241	255	230		53	19		217	248	253	255	52	
0	18	146	250	255	247	255	255	255	249	255	240	255	HEE.	0	
0	0	23	HE.	215	255	250	248	255	255	248	248	118	14	12	
0	0	6		0	- 52	163	233	255	252	147	-37	0	0	4	
0	0	- 5	- 5	0	· 0	- a	- 0		14	- 1	0	- 6	- 6	0	

0	2	15	0	0	11	10	0	0	0	0	9	9	0	0	0	
0	0	0	4	60	157	236	255	255	177	95	61	32	0	0	29	
0	10	16	119	238	255	244	245	243	250	249	255	222	103	10	0	
0	14	170	255	255	244	254	255	253	245	255	249	253	251	124	1	
2	98	255	228	255	251	254	211	141	116	122	215	251	238	255	49	
13	217	243	255	155	33	226	52	2	0	10	13	232	255	255	36	
16	229	252	254	49	12	0	0	7	7	0	70	237	252	235	62	
6	141	245	255	212	25	11	9	3	0	115	236	243	255	137	α	
0	87	252	250	248	215	60	0	1	121	252	255	248	144	6	0	
0	13	113	255	255	245	255	182	181	248	252	242	208	36	0	19	
1	0	5	117	251	255	241	255	247	255	241	162	17	0	7	σ	
0	0	0	4	58	251	255	246	254	253	255	120	11	0	1	0	
0	0	4	97	255	255	255	248	252	255	244	255	182	10	0	4	
0	22	206	252	246	251	241	100	24	113	255	245	255	194	9	0	
0	111	255	242	255	158	24	0	0	6	39	255	232	230	56	0	
0	218	251	250	137	7	11	0	0	0	2	62	255	250	125	3	
0	173	255	255	101	9	20	0	13	3	13	182	251	245	61	0	
0	107	251	241	255	230	98	55	19	118	217	248	253	255	52	4	
0	18	146	250	255	247	255	255	255	249	255	240	255	129	0	5	
0	0	23	113	215	255	250	248	255	255	248	248	118	14	12	0	
0	0	6	1	0	52	153	233	255	252	147	37	0	0	4	1	
0	0	5	5	0	0	0	0	0	14	1	0	6	6	0	0	

0 1 2 3 4 5 6 7 8 9 ... column indices.

() 2	11	0	0	11	10	0	0	0	0	9	9	0	0	0
) ((4	60	157	236	255	255	177	95	61	32	0	0	29
	10	16	119	238	255	244	245	243	250	249	255	222	103	10	0
	14	170	255	255	244	254	255	253	245	255	249	253	251	124	1
2	98	255	228	255	251	254	211	141	116	122	215	251	238	255	49
13	3 217	243	255	.55	33	226	52	2	0	10	13	232	255	255	36
16	229	252	254	49	12	0	0	7	7	0	70	237	252	235	62
6	141	245	255	12	25	11	- 9	3	0	115	236	243	255	137	0
0	87	252	250	48	215	60	0	1	121	252	255	248	144	6	0
	13	113	255	:55	245	255	182	181	248	252	242	208	36	0	19
1	0	1	117	251	255	241	255	247	255	241	162	17	0	7	0
	0	(4	58	251	255	246	254	253	255	120	11	0	1	0
	0	4	97	255	255	255	248	252	255	244	255	182	10	0	4
	22	206	252	246	251	241	100	24	113	255	245	255	194	9	0
	111	255	242	255	158	24	0	0	6	39	255	232	230	56	0
	218	251	250	37	7	11	0	0	0	2	62	255	250	125	з
	173	255	255	.01	9	20	0	13	3	13	182	251	245	61	a
	107	251	241	255	230	98	55	19	118	217	248	253	255	52	4
	18	146	250	255	247	255	255	255	249	255	240	255	129	0	5
	0 0	25	113	15	255	250	248	255	255	248	248	118	14	12	0
			1	0	52	153	233	255	252	147	37	0	0	4	1
_			-			200	200	2.00				-		-	
			0	0	0	Ű	0	0	14	1	Ū.	0	0	0	u

0	2	15	0	0	11	10	0	0	0	0	9	9	0	0	Ó
0	0	0	4	60	157	236	255	255	177	95	61	32	0	0	29
0	10	16	119	238	255	244	245	243	250	249	255	222	103	10	0
0	14	170	255	255	244	254	255	253	245	255	249	253	251	124	1
2	98	255	228	255	251	254	211	141	116	122	215	251	238	255	49
13	217	243	255	155	33	226	52	2	0	10	13	232	255	255	36
16	229	252	254	49	12	0	0	7	7	0	70	237	252	235	62
6	141	245	255	212	25	11	9	3	0	115	236	243	255	137	¢
0	87	252	250	248	215	60	٥	1	121	252	255	248	144	6	¢
0	13	113	255	255	245	255	182	181	248	252	242	208	36	0	19
1		5	117	251	255	241	255	247	255	241	162	17	0	7	¢
0		0	4	58	251	255	246	254	253	255	120	11	0	1	Ó
0	0	4	97	255	255	255	248	252	255	244	255	182	10	0	4
0	22	206	252	246	251	241	100	24	113	255	245	255	194	9	0
0	111	255	242	255	158	24	0	0	6	39	255	232	230	56	0
0	218	251	250	137	7	11	0	0	0	2	62	255	250	125	3
0	173	255	255	101	9	20	0	13	3	13	182	251	245	61	0
0	107	251	241	255	230	98	55	19	118	217	248	253	255	52	4
0	18	146	250	255	247	255	255	255	249	255	240	255	129	0	5
0	0	23	113	215	255	250	248	255	255	248	248	118	14	12	0
0		6	1	Q	52	153	233	255	252	147	37	0	0	- 4	1
0	0	5	5	0	0	0	0	0	14	1	0	6	6	0	Ó

Challenges with learning images

I 50 x I 50 pixels x 3
 (RGB) = 67,500

High dimensional input

2D correlations

Problems:

- Operational invariance
 - Scale, translation, etc

Sun flower?

Very hard to train with DNN!

Number of parameters = $3 \times (D \times D) + D$ To feed images to FCN (DNN), we can flatten the images.

For a 32x32 image, D=1024.

Number of parameters = $3 \times (1024 \times 1024)$ + $1024 = ~ 3 \times 10^{6}$

Convolutional neural networks (CNNs)

Hierarchical Architecture of the mammalian visual cortex

- Ventral (recognition) pathway in the visual cortex has multiple stages
 Retina LGN V1 V2 V4 PIT AIT
- It's hierarchical
- There is local processing

LeNet (1989)

A Full Convolutional Neural Network (LeNet)

LeNet1 Demo from 1993

Running on a 486 PC with an AT&T DSP32C add-on board (20 Mflops!)

Why CNN now? A: ImageNet and GPU

- The ImageNet dataset [Fei-Fei et al. 2012]
 - 1.5 million training samples
 - 1000 categories
- NVIDIA Graphical Processing Units (GPU)
 - Capable of 1 trillion operations/second

Sea lion

Strawberry

Racket

Flute

ImageNet large-scale visual recognition challenge (ILSVRC)

- The ImageNet dataset

- 1.5 million training samples of size 224x224x3
- 1000 fine-grained categories (breeds of dogs....)

partridge quail

pill bottle

ruffed grouse

beer bottle wine bottle water bottle pop bottle ...

race car

minivan

jeep

CNN ingredients

- Convolutional filters

- local connectivity
- parameter sharing

-Pooling/subsampling hidden units

Convolution filters

Image

4		

Convolved Feature

8 feature maps. Size of feature map -> parameters we set for the kernel.

Feature map

filters=16, kernel_size=5

Pooling

Example of Max Pooling.

Padding

https://classic.d2l.ai/chapter_convolutional-neural-networks/padding-and-strides.html

Strides

Stride is how much we move the kernels forward at each step during the convolution operation. When the stride is 1 then we move the filters one pixel at a time. When the stride is 2 then the filters jump 2 pixels at a time as we slide them around. This will produce smaller output volumes spatially.

Data augmentation

- Goal: introduce scale and rotational invariance
- How? Generate artificial images

Different CNNs

- AlexNet
- VGGNet
- Inception model
- ResNet

. .

ResNet (He et al, 2015)

ILSVRC 2015 winner (3.6% top 5 error)

1st places in all five main tracks

- ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
- ImageNet Detection: 16% better than 2nd
- ImageNet Localization: 27% better than 2nd
- COCO Detection: 11% better than 2nd
- COCO Segmentation: 12% better than 2nd

152 layers!!!

25.5M parameters

method	top-1 err.	top-5 err.
VGG [41] (ILSVRC'14)	-	8.43 [†]
GoogLeNet [44] (ILSVRC'14)	-	7.89
VGG [41] (v5)	24.4	7.1
PReLU-net [13]	21.59	5.71
BN-inception [16]	21.99	5.81
ResNet-34 B	21.84	5.71
ResNet-34 C	21.53	5.60
ResNet-50	20.74	5.25
ResNet-101	19.87	4.60
ResNet-152	19.38	4.49

Table 4. Error rates (%) of single-model results on the ImageNet validation set (except † reported on the test set).

ResNet (He et al, 2015)

ResNet (He et al, 2015)

Why does it work?

3x3 conv, 256

urgh

TILON

The "identity" path preserve the gradient!

Results of 2017

Deep learning modules

X(1)

X(2)

X(3)

X(6)

0 to 1

(probability)

-Inf to Inf

(logIC ___)

0 to 1

(activation status)

University of Pittsburgh

Building a convolution neural network (CNN)

Supervised deep learning models

Self-Attention

GATA3

HSPA4

ATF1

••• FOXA1

Unsupervised deep learning models

