Grasping Deep Learning from Fundamentals

to Applications

June 15, 2023

Lecture 2 - Convolutional Neural Networks (CNNs)

Instructors: Yufei Huang, PhD; Arun Das, PhD

AlphaFold Is The Most Important Achievement In AI - Ever

37% of tech organizations use Al!
VB VentureBeat
Uber's self-driving AI predicts the trajectories of pedestrians, vehicles, and cyclists
In a paper, Uber researchers describe an autonomous vehicle perception
 system that reasons about the behavior of pedestrians, vehicles, and ...
= World Economic Forum
How Al and machine learning are helping to tackle COVID19
Organizations have been quick to apply Al and machine-learning in the fight to curb the pandemic - and here are some of the most exciting

Deepfake Generation: Forbes Article

Instance Segmentation

Results
tag Confidence
Negative
(1) 1

Classify Text

The AI needs to see!

- Human vision is a complex phenomenon starting with the light rays entering through the cornea of the eye and the visual cortex making sense of the various signals it receives.
- However, computers speak only numbers. Hence, images are represented as numbers, usually in intensities ranging from 0 to 255 .

0215001110000099000 - 0 O 460157235255255177 95 61320029 - $101611923825524426524325024925522210310 \quad 0$ - $14170255255244254255253245255249253251124 \quad 1$ 29825522825525125421114111612221525123825549 $13217243255155 \quad 3322652 \quad 2 \quad 01013232255255 \quad 36$ $\begin{array}{lllllll}13217243255155 & 33226 & 52 & 2 & 0 & 10 & 132322552255 \\ 16229252254 & 49 & 12 & 0 & 0 & 7 & 7\end{array} 07023725223562$ $\begin{array}{llllllll}6141245255212 & 25 & 11 & 9 & 3 & 0115236243255137 & 0\end{array}$ - $8725225024821560 \quad 1 \quad 1121252255248144 \quad 6 \quad 0$ - 1311325525524525518218124525224220836019 $10 \quad 5117251255241255267255241162170070$ - O O 4 5825125524525425325512011010 - O \& 972552552552482522552442551821004 - $2220625224625124110024113255245255194 \quad 9 \quad 0$ $011125524225515824 \quad 0 \quad 0 \quad 6 \quad 3925523223056$ $0218251250137 \quad 711000226255250125 \quad 3$ $0173255255101 \quad 920 \quad 0 \quad 13 \quad 31318225124561 \quad 0$ $010725124125523058551911821724825325552 \quad 4$ - $181462502552472552552552452552402551290 \quad 5$ - O $231132152552502482552552582481181412 \quad 0$ - 06610581532332552521473700041

University of
Pittsburgh

Challenges with learning images

Problems:

- High dimensional input
- 150×150 pixels $\times 3$ $($ RGB $)=67,500$
- 2D correlations
- Operational invariance
, Scale, translation, etc

Very hard to train with DNN!

Number of parameters $=3 \times(\mathrm{D} \times \mathrm{D})+\mathrm{D}$ To feed images to FCN (DNN), we can flatten the images.

For a 32×32 image, $D=1024$.

Number of parameters $=3 \times(1024 \times 1024)$
$+1024=\sim 3 \times 10^{6}$

Convolutional neural networks (CNNs)

Hierarchical Architecture of the mammalian visual cortex

- Ventral (recognition) pathway in the visual cortex has multiple stages Retina - LGN - V1 - V2 - V4 - PIT - AIT
- It's hierarchical
- There is local processing

LeNet (1989)

A Full Convolutional Neural Network (LeNet)

LeNet1 Demo from 1993

- Running on a 486 PC with an AT\&T DSP32C add-on board (20 Mflops!)

 answer: 384
$\begin{array}{llll}33 & 88 & 44\end{array}$ 3318814

Why CNN now? A: ImageNet and GPU

- The ImageNet dataset [Fei-Fei et al. 2012]
- 1.5 million training samples
- 1000 categories

Flute
-NVIDIA Graphical Processing Units (GPU)

- Capable of 1 trillion operations/second

Backpac

Strawberry

Racket

ImageNet large-scale visual recognition challenge (ILSVRC)

- The ImageNet dataset
-1.5 million training samples of size $224 \times 224 \times 3$
- 1000 fine-grained categories (breeds of dogs....)

Pittsburgh

CNN ingredients

- Convolutional filters

- local connectivity
- parameter sharing
-Pooling/subsampling hidden units

Convolution filters

$1_{x_{1}}$	$1_{x 0}$	$1_{x 1}$	0	0
$0_{x 0}$	$1_{x 1}$	$1_{x 0}$	1	0
$0_{x 1}$	$0_{x 0}$	$1_{x 1}$	1	1
0	0	1	1	0
0	1	1	0	0

Convolved Feature

8 feature maps.
Size of feature map -> parameters we set for the kernel.

(height, width, channels)

$1_{x_{1}}$	$1_{x 0}$	$1_{x_{1}}$	0	0
$0_{x 0}$	$1_{x 1}$	$1_{x 0}$	1	0
$0_{x 1}$	$0_{x 0}$	$1_{x 1}$	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

5

5

Kernet of Conv-Layer

Output of Conv Layer

Feature Map

tf.keras.layers.Conv2D(filters=2, kernel_size=(4,2), padding='same', activation='relu', input_shape=(5,5,1)),

$* 1$	$* 2$
$* 3$	$* 4$
$* 5$	$* 6$
$* 7$	$* 8$

tf.keras.layers.Conv2D(filters=2, kernel_size=2, padding='same', activation='relu')

University of
Pittsburgh

Pooling

Example of Max Pooling.

Padding

Input

\cdots	\cdots	\cdots	\cdots
0	0	0	0
0	0	1	2
0	3	4	5
0	0	7	8
0	0	0	0
	0	0	
	0		

Kernel

Strides

Strides $=1$

Stride is how much we move the kernels forward at each step during the convolution operation. When the stride is 1 then we move the filters one pixel at a time. When the stride is 2 then the filters jump 2 pixels at a time as we slide them around. This will produce smaller output volumes spatially.

Data augmentation

- Goal: introduce scale and rotational invariance
- How? Generate artificial images

Different CNNs

- AlexNet
- VGGNet
- Inception model
- ResNet

Inception module

ILSVRC 2014 winner (6.7\% top 5 error)

ResNet (He et al, 2015)

ILSVRC 2015 winner (3.6% top 5 error)

- 1st places in all five main tracks

- ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
- ImageNet Detection: 16\% better than 2nd
- ImageNet Localization: 27\% better than 2nd
- COCO Detection: 11% better than 2nd
- COCO Segmentation: 12% better than 2nd

152 layers!!!

25.5M parameters

method	top-1 err.	top-5 err.
VGG [41] (ILSVRC' 14)	-	8.43^{\dagger}
GoogLeNet [44] (ILSVRC' 14)	-	7.89
VGG [41] (v5)	24.4	7.1
PReLU-net [13]	21.59	5.71
BN-inception [16]	21.99	5.81
ResNet-34 B	21.84	5.71
ResNet-34 C	21.53	5.60
ResNet-50	20.74	5.25
ResNet-101	19.87	4.60
ResNet-152	$\mathbf{1 9 . 3 8}$	$\mathbf{4 . 4 9}$

ResNet (He et al, 2015)

ILSVRC 2015 winner (3.6\% top 5 error)

ResNet (He et al, 2015)

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun
Microsoft Research
\{kahe, v-xiangz, v-shren, jiansun\} @ microsoft.com

Why does it work?

- The "identity" path preserve the gradient!

Results of 2017

Deep learning modules

Dense layers

Convolutional layer
 Residual layer

Attention layer

Prediction layers

Building a convolution neural network (CNN)

Supervised deep learning models

Transformer
RNN (LSTM, GRU)

Pittsburgh

Graph CNN

ResNet

Unsupervised deep learning models

Generative Adversarial Network (GAN)

